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a b s t r a c t 

Predicting how species respond to changes in climate is critical to conserving biodiversity. Modeling efforts to 

date have largely centered on predicting the effects of warming temperatures on temperate species phenology. 

In and near the tropics, the effects of a warming planet on species phenology are more likely to be driven by 

changes in the seasonal precipitation cycle rather than temperature. To demonstrate the importance of considering 

precipitation-driven phenology in ecological studies, we present a case study wherein we construct a mechanistic 

population model for a rare subtropical butterfly (Miami blue butterfly, Cyclargus thomasi bethunebakeri ) and 

use a suite of global climate models to project butterfly populations into the future. Across all iterations of the 

model, the trajectory of Miami blue populations is uncertain. We identify both biological uncertainty (unknown 

diapause survival rate) and climate uncertainty (ambiguity in the sign of precipitation change across climate 

models), and their interaction as key factors that determine persistence vs. extinction. Despite uncertainty, the 

most optimistic iteration of the model predicts that Miami blue butterfly populations will decline under the higher 

emissions scenario (RCP 8.5). The lack of climate model agreement across the projection ensemble suggests that 

investigations into the effect of climate change on precipitation-driven phenology require a higher level of rigor 

in the uncertainty analysis compared to analogous studies of temperature. For tropical species, a mechanistic 

approach that incorporates both biological and climate uncertainty is the best path forward to understand the 

effect shifting precipitation regimes have on phenology and population dynamics. 
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Climate change is shifting the timing of life history events (phenol-

gy) across a wide variety of taxa [ 1 , 2 ]. The timing of these events

volved to maximize species’ ability to exploit seasonal resources. As un-

erlying seasonality changes, there are consequences, both positive and

egative, that ultimately determine which species persist and which go

xtinct [ 3 , 4 ]. Nearly all of our knowledge of climate-driven phenologi-

al shifts come from studies of temperate species for which temperature

nd photoperiod are critical drivers of phenology [ 1 , 5 ]. At low-latitudes,

easons are more likely to be defined by the arrival and departure of

eriods of intense rainfall rather than seasonal temperature variations

 Fig. 1 ) (for simplicity, in this paper we use the term tropical to refer to

hese environments and the species that inhabit them). The highest sea-

onal variation between wet and dry seasons peaks in both hemispheres

etween approximately 10- and 25-degrees latitude. It is in this loca-
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ion where changes in seasonal precipitation cycles are likely to drive

emporal changes in behavior and abundance of species [ 6 , 7 ], as we

nvestigate here. 

Climate-driven shifts in phenology affect individual fitness by chang-

ng species interactions, environmental conditions, and resource avail-

bility, which can lead to changes in population dynamics [ 8 , 9 ]. In tem-

erate regions, species that track changing climate and match their phe-

ology accordingly generally incur fitness benefits [10–12] . For exam-

le, earlier snowmelt triggers earlier marmot emergence from hiberna-

ion, which leads to earlier weaning of young, larger adult body mass

nd increased adult survival, which ultimately results in population in-

reases [13] , but see [14] . For butterflies, increasing spring tempera-

ure leads to earlier emergence. Multivoltine species capitalize on earlier

mergence, and a longer activity period, by adding generations, which

eads to population growth [ 15 , 16 ]. What remains unknown is whether

hese same patterns hold true in precipitation-driven systems. Under-
ary 2022 

ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.ecochg.2022.100051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ecochg
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecochg.2022.100051&domain=pdf
mailto:ehenry@ncsu.edu
https://doi.org/10.1016/j.ecochg.2022.100051
http://creativecommons.org/licenses/by-nc-nd/4.0/


E.H. Henry, A.J. Terando, W.F. Morris et al. Climate Change Ecology 3 (2022) 100051 

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Latitude

Te
m

pe
ra

tu
re

S
ea

so
n a

lit
y

0.25

0.50

0.75

1.00

0 25 50 75
Latitude

P
re

ci
pi

ta
ti o

n
S

e a
so

na
l it

y

North

South

Frost

A B

Fig. 1. Differences between observed (and standardized) seasonality for temperature and precipitation, by latitude. Black and gray lines represent latitudinal 

averages for the Northern and Southern Hemispheres, respectively (1970–2000; WorldClim https://www.worldclim.org/ [19] ). Blue lines represent latitudinal 

bands that commonly experience seasonal freezing periods where the mean temperature of the coldest quarter is below 2 °C. Temperature seasonality is defined as 

the difference between the warmest and coldest quarters and is normalized relative to the latitude band with the maximum value. Precipitation seasonality is derived 

from the calculated coefficient of variation and normalized in the same way as temperature. 
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a  
tanding these mechanisms is central to being able to make predictions

bout how sensitive a species might be under future environmental con-

itions or to identify management actions that may increase a species

esilience to changes in climate [ 17 , 18 ]. 

Even though the majority of earth’s biodiversity is found at low lat-

tude, very few studies have examined how changing precipitation pat-

erns are affecting the phenology and population dynamics of tropical

pecies [ 1 , 5 , 20 ]. One major challenge is that, unlike temperature, the

ffects of increasing atmospheric CO 2 on precipitation are more indi-

ect (mainly arising from increasing temperatures) and variable [21] .

n general, temperatures are increasing globally. Temperature increases

ead to longer growing seasons and shorter dormancy periods, both of

hich can increase population growth, especially for insects [ 11 , 22 ].

he direction of precipitation change, however, is not uniform across

he globe. Some regions are projected to experience increases in pre-

ipitation and others decreases [23] . In addition to changes in the to-

al amount of precipitation, seasonal precipitation is projected to shift

21] . In subtropical regions, more frequent precipitation may elongate

he growing season and decrease the length of dry season dormancy.

ess frequent precipitation may shorten growing seasons and increase

ormancy. If populations respond to precipitation change as they do to

arming temperature, more frequent rains would result in population

rowth, and less frequent rains in population decline ( Fig. 2 ). 

The challenge to uncovering these patterns in tropical systems is

hat, compared to temperate regions, long-term monitoring data and

n situ meteorological observations are less widely available [ 6 , 24 , but

ee 25 ]. This makes it difficult to conduct empirical phenological studies

ommonly applied to high latitude species such as pairing meteorolog-

cal observations with long-term species monitoring and/or herbarium

pecimens [22] . Mechanistic models offer another way to test hypothe-

es about how changing climate will affect population dynamics [26] .

he discrete, stochastic nature of precipitation events favor mechanistic

odels over correlative approaches [ 27 , 28 ]. Models that explicitly link

ital rates (birth and death rates) to precipitation events and project

recipitation-driven population dynamics are powerful tools for under-

tanding what the future may hold for many tropical species [29] . 

Key to building informative global change projections of biological

ystems is incorporating multiple sources of uncertainty [30] . This is es-

ecially important in the context of precipitation change, the projections

f which are much “noisier ” than temperature projections ( Fig. 3 ). This

nherent uncertainty in our analyzes of how species with precipitation-

riven phenology are likely to be affected by future warming must be

cknowledged in model results. Additionally, the knowledge we have

bout how behavior, physiology, genes, and species interact to shape

daptive (or non-adaptive) responses to climate change is highly un-
2 
ertain, especially in the context of precipitation change and tropical

pecies [ 18 , 31 , 32 ]. Neglecting either climate model-driven or biolog-

cal uncertainty in our projections of future conditions increases the

isk that decision makers will be misinformed about the actual range

f possible outcomes that may result from conservation actions (or

nactions). 

Butterflies provide a model system in which we can mechanistically

xplore how changes in precipitation patterns are affecting tropical in-

ect phenology and population dynamics [ 11 , 33 , 34 ]. The phenology of

emperate butterfly species is generally driven by temperature and pho-

operiod; spring time emergence depends on heat accumulation and fall

iapause by photoperiod [35] Although small changes in temperature

nd photoperiod also cue periods of dormancy in the tropics, tropical

utterfly phenology fluctuates more closely with precipitation patterns

han temperature [36–38] . Peak abundance of many tropical insects oc-

urs during the wet season [39–41] and many insects spend the dry

eason in a state of diapause [ 42 , 43 ], the end of which is triggered by

ainfall [44] . 

To better understand how a changing climate will alter these sea-

onal patterns and resulting population dynamics, we focus on an endan-

ered tropical butterfly (Miami blue, Cyclargus thomasi bethunebakeri ); a

ultivoltine species whose abundance is sensitive to seasonal precipi-

ation cycles [37] . In parallel with other terrestrial insects, Miami blue

ange and abundance have declined considerably in the last 40 years

45–47] . We explore what role future changes in precipitation may have

n controlling population trends for Miami blues by mechanistically link-

ng butterfly emergence from diapause with accumulated precipitation

7] and predict future population dynamics using daily rainfall projec-

ions. Our modeling approach provides a framework for understanding

he effects of changing precipitation regimes on tropical insects across

he globe. With this model we ask two questions: 1) How sensitive are

opulation size and growth rate to projected changes in precipitation

nd the uncertainty in those projections? 2) How sensitive are our pre-

ictions of persistence vs. extinction to uncertainty in vital rates? By

escribing Miami blue butterfly lifecycles in which growth and repro-

uction are triggered by rainfall, our approach provides a model to rep-

esent a common and critically important life history strategy among

any tropical organisms. 

ethods 

tudy species 

We use the Miami blue butterfly ( Cyclargus thomasi bethunebakeri )

s a model organism to demonstrate the importance of precipitation in

https://www.worldclim.org/
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Fig. 2. Conceptual model of population responses to temperature and precipitation change. Top panel highlights that increasing temperature lengthens growing 

season, which allows for population growth, whereas rainy seasons may become more frequent OR less frequent which could cause growing seasons to lengthen and 

populations to increase OR growing seasons to shorten and populations to decrease. As growing seasons change, so does the interval between them, the dormancy 

period, depicted in the bottom panel. As temperatures rise, the dormancy period becomes shorter and populations increase, more frequent rainy seasons also shorten 

dormancy periods and cause population increases, and less frequent rainy seasons lengthen the dormancy period and populations decline. 

0

10

20

30

0 25 50 75
Latitude

S
ig

na
l t

o 
N

oi
se

 R
at

io

Precip

Temp

Fig. 3. Signal-to-noise ratios (SNRs) of projected 

changes for annual temperature and precipitation, by 

latitude. SNR is calculated as the ratio of the mean 

projected change for a given latitudinal band for the 

end of the 21st century (2080–2099) relative to the 

period 1980–1999 compared to the standard devia- 

tion calculated over the same historical period. Tem- 

perature (orange) and precipitation (blue) SNRs for 

39 GCMs from the CMIP5 project under the higher 

emissions scenario, RCP8.5, are shown. CMIP5 output 

were obtained from the KNMI Climate Explorer Tool 

( http://climexp.knmi.nl/ ). 
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riving low-latitude species phenological responses to climate change.

iami blues are near extinction; their global distribution is 18 ha com-

rised of seven beaches on six islands located 30 km west of Key West

Florida, USA, 24.5551° N, 81.7800° W). The Florida Keys climate is

ubtropical, with seasonality driven by precipitation. The annual precip-

tation regime is characterized by a dry season (December–April) that
3 
eceives 25% of annual precipitation, and a wet season (June–October)

hat receives 60% of annual precipitation. Mean monthly temperatures

re warm and variation is low (highs: 23–32 °C, lows: 18–26 °C). Climate

odels project a decrease in precipitation in this region, particularly

n the historical “rainy season ” [48] . This drying pattern is predicted

cross the Caribbean and much of the neotropics [23] . Therefore, many

http://climexp.knmi.nl/
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Fig. 4. Conceptual figure of the population model. In the model, female butterflies lay eggs (E) on new growth of hostplants. Those eggs hatch and caterpillars feed 

on the tender new plant growth until they pupate ( 𝑆 
𝐷 𝑙 
𝑙 
) . If it has rained a sufficient amount prior to the day the egg was laid (wet period), we assume there is still 

new growth on the plants, and that butterflies will emerge from pupae 𝑥 𝑡 − 𝐷 𝑙 days later, continuing the cycle. If it has not rained a sufficient amount prior to egg 

laying (dry period), we assume the host plants have dried out and are no longer palatable, therefore pupae will diapause ( 𝑆 
𝑥 𝑡 − 𝐷 𝑙 
𝑝 ) waiting for rain. Once a sufficient 

amount of rain falls, the host plants start producing new leaves, and butterflies emerge from pupae 𝑥 𝑡 − 𝐷 𝑙 days later. 𝑥 𝑡 represents the days it takes for an egg to 

become a butterfly and varies based on precipitation patterns. Because survival rates are daily, diapause mortality increases as 𝑥 𝑡 increases. (Infographic credit: Neil 

McCoy). 
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recipitation-driven species may experience similar effects to those we

redict for Miami blues. 

Henry et al. [37] found that periods of high adult Miami blue abun-

ance are followed by periods of low, or no, adult butterflies. Phenol-

gy of adult emergence and abundance is fine-tuned to precipitation

atterns: high adult abundances occur five weeks after total rainfall in

 five-week period exceeds 130 mm (see “Precipitation and butterflies ”

n supplement, Fig. S2). It is likely that this pattern of precipitation-

riggered emergence stems from response of Miami blue host plants to

recipitation. Miami blue butterflies can use at least three larval hosts

ncluding, Florida Keys blackbead ( Pithecellobium keyense ), gray nicker-

ean ( Caesalpinia bonduc ), and ballonvine ( Cardiospermum corindum ). In

he current occupied range of the Florida Keys, Florida Keys blackbead

s the only host that is present. Female butterflies lay eggs on newly

merged leaves and flower buds of their hosts. The phenology of flow-

ring and leaf production of this species is not well understood, but

ppears to be sporadic, happening in pulses, the timing of which varies

rom year to year [49] . 

We hypothesize that moisture modulates host plant quality, which

ffects larval development [7] . We assume that during rainy periods,

utterfly host plants produce sufficient new growth to sustain continu-

us growth and reproduction of Miami blue butterflies; larvae develop

irectly into adults without entering diapause ( Fig. 4 , top panel). Lack

f sufficient rain, however, will cause host plants to stop producing new

rowth, which cues immature butterflies to enter diapause, either as

ate-instar larvae or pupae. Diapause termination is then triggered once

 sufficient amount of precipitation has fallen for host plants to again

roduce new plant growth suitable for larval development ( Fig. 4 , bot-

om panel). The specific environmental cue that triggers diapause termi-

ation for Miami blue butterflies is unknown. This relationship between

bundance and precipitation reveals a clear mechanism through which

uture changes in precipitation patterns could impact Miami blue but-

erfly populations. If diapause periods become longer and/or more fre-

uent (i.e. less accumulated precipitation), butterfly populations could
4 
ecline. During diapause, other factors, such as increased exposure to

redation and parasitism or decreased resources [50] , could interact

ith climate change to reduce population sizes. 

utterfly model 

We built a model of Miami blue butterfly population dynamics based

n the above assumed relationship between precipitation and butterfly

bundance. To capture these dynamics, we use a variable, x t , to explic-

tly link butterfly phenology and population dynamics to precipitation

atterns. In our model, x t represents the total immature development

ime, partitioned into life stage lengths for larvae ( D l ), pupae ( D p ), and

iapause ( D d ): x t = D l + D p + D d . The sum of the first two terms is the

ctive development time required to reach adulthood and thus always

akes on a positive value. The third term, the diapause stage length,

epends on daily precipitation and can, therefore, have lengths greater

han or equal to zero. Borrowing from models that use growing degree

ays to predict butterfly emergence [ 11 , 27 ], we estimated a threshold

mount of precipitation P that must accumulate over a time window,

 , to trigger butterfly emergence. If the precipitation threshold ( P ) has

lready been reached at the time of oviposition then diapause length

 D d ) will be zero. If the threshold has not been reached, then diapause

ength is the number of subsequent days required to reach the precipi-

ation threshold: D d = min 
t 

f (t) subject to 
t ∑

i=t−w 
p i ≥ P where p i is the pre-

ipitation occurring on day i . 

We derived empirical estimates of ( D l + D p ) , P , and w , from two

ears of survey data (see “Precipitation and Butterflies ” in supplement).

rom these data, the values that resulted in the best set of predictors

f butterfly abundance were P = 130 mm and (coincidentally) 35 days

or both w and ( D l + D p ) (Figs. S1 and S2). Our estimate for ( D l + D p ) is
n good agreement with laboratory-based estimates of 24–31 days un-

er ideal conditions (S. Steele Cabrera, University of Florida, personal

ommunication). We interpret this threshold (130 mm, Fig. 3 ) to be the
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Table 1 

Parameter definitions and data sources. Development time and daily larval survival data are for larvae in a captive 

colony raised on Florida keys blackbead ( Pithecellobium keyense ). See “Vital Rates ” in supplement for detailed methods 

on estimating vital rates. 

Parameter Estimate Data source 

Daily adult survival 0.53 Captive individuals in flight cage (S. Steele Cabrera, University of Florida, 

unpublished data) 

Egg laying rate ( E ) 

(eggs/day) 

14 ± 7 Captive individuals in the laboratory (E. Heffernan, New College of Florida, 

unpublished data) 

Larval development time ( D l ) 

(days) 

22 ± 3 Captive individuals in laboratory (J. Daniels et al. unpublished data) 

Daily larval survival ( S l ) 0.96 ± 0.023 ∗ Captive individuals in the absence of predation (J. Daniels et al. 

unpublished data) 

Daily diapause survival ( S d ) 0.980–0.995 This is the range across which model predictions flip from extinction to 

persistence 

∗ daily survival of 0.96 equates to total larval survival of 0.42. 
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inimum amount of cumulative precipitation that must fall within the

5-day window, w, to stimulate or maintain new plant growth which

n turn triggers both the end of diapause (if it was initiated because

 > 1), and the ensuing 35-day active development period (the ‘lag’) re-

uired before butterfly emergence. Although we model this as the same

 D l + D p ) period, we note that it is currently unknown if individuals are

lready within D p at the end of diapause, or if they are actually in larval

iapause state. 

We connected butterfly abundance to precipitation patterns using x t 
ith the following equation: 

 t̄ = 

N ( t− x t ) 
2 

E S l D l S d x t − D l (1)

This equation predicts the number of butterflies with mean emer-

ence on day t̄ . This is the product of the number of female butter-

ies that were present x t days prior, N t− x t ∕2 (division by 2 assumes an

qual sex ratio in the population), the eggs laid per day, E (eggs hatch

n three days or less and their daily mortality is negligible so we assume

00% survival), the fraction of larvae that survived for D l days at a daily

ate of S l , and the fraction of those that survived in the diapause and

upation stages for x t − D l days at a daily rate of S d . Because any co-

ort of butterflies does not all emerge on one day, we used Zonneveld’s

51] model of insect abundance over time to distribute butterfly emer-

ence across a flight period with mean emergence day ̄t . The Zonneveld

odel predicts butterfly emergence based on the following four param-

ters: population size, mean and standard deviation of the emergence

ay, and daily death rate [51] . With this approach, we both distribute

ach cohort of butterflies over multiple days and allow each adult to

ive for multiple days post-emergence based on the daily death rate in

he model (see “Emergence Curve ” in supplement). Finally, we imposed

 maximum population size of 100,000 butterflies in our model – this

s the maximum abundance we estimate for the wild population using

eak abundance estimates from Henry et al. [37] and the emergence

urve described above. 

All vital rates used in this model were estimated with captive indi-

iduals at the Florida Museum of Natural History ( Table 1 – see “Vital

ates ” in supplement), except for diapause survival. Miami Blue dia-

ause is the one life stage about which we know almost nothing. For

his reason, we ran the model with a range of diapause survival values

nd report results across that range. The range of diapause survival val-

es was tuned to capture the values where the model predictions flip

rom extinction to persistence. We used vital rates from captive individ-

als because we have yet to estimate vital rates in the wild. 

redicting future population dynamics 

To evaluate how projected changes in precipitation patterns affect

he persistence or extinction of Miami blue butterflies, we used down-

caled projections of daily rainfall. We used downscaled data for two
5 
easons: (1) the two-degree resolution of global climate models is larger

han the entire range of Miami blue butterflies, and (2) precipitation

atterns in south Florida are largely driven by local climate forcings

f convective thunderstorms and island cloudlines, phenomena that oc-

ur on a scale much smaller than two degrees. The daily precipitation

ata we used are part of the MACAv2-METDATA dataset. Climate forc-

ngs in this dataset were drawn from a statistical downscaling of 20

lobal climate models from the Coupled Model Intercomparison Project

 CMIP5 [52] using the Multivariate Adaptive Constructed Analogs

MACA) method. This method statistically downscales the two-degree

esolution of the global climate model data to four-kilometer resolu-

ion. Like all statistical downscaling techniques, this method relies on a

raining dataset that is based on historical meteorological observations

rom weather stations. The training dataset used to produce MACAv2-

ETDATA projections is METDATA [53] . The southern extent of MET-

ATA, and therefore MACAv2-METDATA projections, is 25°N, which in-

ludes the southernmost tip of mainland Florida and part of Key Largo,

ut excludes the lower Florida Keys and the range of Miami blue but-

erflies. Since we could not select model output directly from the lower

lorida keys for our projections, we instead chose the location in the

ata set that was closest to Key West while still in the Florida Keys,

hich was in Key Largo ( − 80.4939E, 25.2764 N). 

We used the projected daily precipitation values to drive the butter-

y population dynamics of our model ( Eq. (1) ). We simulated popula-

ion dynamics from 2018 to 2100 under two greenhouse gas emissions

cenarios, RCP 4.5 (stable emissions rate followed by a decline in emis-

ions by mid-century) and RCP 8.5 (near status quo emissions). For each

limate change scenario, we simulated butterfly populations using each

f the 20 models in the MACA ensemble. At the end of each simulation,

e extracted the last date on which at least one adult butterfly was pre-

icted to occur as a measure of population persistence or extinction. To

nderstand how sensitive our results were to daily diapause survival, the

arameter for which we have no prior information, we ran the model

cross a range of daily diapause survival values from 0.980 to 0.995 in

ncrements of 0.001. Additionally, we evaluated the effect of population

ize on the potential for future extinction by varying the initial popu-

ation size over three orders of magnitude, specifically 100, 1000, and

0,000 adult female butterflies. This resulted in a total of 1920 simu-

ations of Miami blue populations (2 GHG scenarios x 20 GCMs x 16

alues of S d x 3 values of N 0 ). 

In addition to examining whether butterfly populations persisted or

ent extinct, we analyzed the trend in population size across the most

ptimistic simulation, starting population size 10,000, daily diapause

urvival 0.995. To do this, we first calculated annual population size by

umming the total number of adult butterflies that emerge each year

or each of the 20 climate models. Because populations fluctuate widely

rom year to year, we then calculated mean annual population size for

he first and last decade of the simulation. We used these decadal av-
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rages to approximate a per-decade geometric growth rate for each cli-

ate model using Eq. (2) . 

= 

( 

𝑁 𝑑 

𝑁 0 

) 

1 
𝑑 

(2)

For N 0 , we used mean annual abundance from 2020–2029, for N d ,

ean annual abundance from 2090–2099, and 7 as d , the number of

ecades represented in our approximation. We calculated a per-decade

ambda for each of the 20 global climate models. With this proxy for

eometric growth, we compared population trajectories by summarizing

nsemble medians and 95% confidence intervals for both greenhouse

as scenarios. To evaluate the sensitivity of these population growth

ates to each vital rate in the model, we performed proportional one-

t-a-time decreases in each vital rate, an analysis analogous to LTRE

ensitivity analyzes [54] . For each iteration, we decreased one vital rate

y 0.01 and calculated the percent change in 𝜆 relative to the baseline

cenario described above. 

esults 

Across all iterations of the model, the future of Miami blue butterflies

s highly uncertain. Sources of uncertainty were biological or climato-

ogical. Biological uncertainty arose as butterfly persistence is highly

ensitive to diapause survival. At both high and low values of daily dia-

ause survival, the variation across climate models is irrelevant; all mod-

ls predict persistence or extinction, respectively. Climatological uncer-

ainty arose at mid-range values of daily diapause survival when the

redictions of each climate model vary widely. For the same value of

iapause survival some models predicted persistence and others early-

entury extinction. This is true regardless of greenhouse gas scenario or

nitial population size. 

Regardless of starting population size or greenhouse gas scenario,

here was a narrow range of values of daily diapause survival over which

he model prediction flipped from extinction to persistence ( Fig. 5 ). As

xpected, there was an inverse relationship between population size and

he daily diapause survival rate for which half the global climate mod-

ls predicted persistence ( 𝑆 𝑑 𝑚𝑖𝑛 
); at higher population sizes, models pre-

icted population persistence with lower values of diapause survival.

or example, in the RCP 8.5 scenario, for a starting population of 100,

000, and 10,000 butterflies, 𝑆 𝑑 𝑚𝑖𝑛 
= 0.989, 0.987, and 0.986, respec-

ively. 

Greenhouse gas scenario had little effect on 𝑆 𝑑 𝑚𝑖𝑛 
, but had a pro-

ounced effect on the overall population trend. In the best-case simula-

ion (daily diapause survival = 0.995 and initial population size 10,000

utterflies), Miami blue population dynamics across the century are sta-

le under RCP 4.5 (median per-decade 𝜆 = 1.002, 95%CI: 0.928–1.061)

nd declining under RCP 8.5 populations (median 𝜆 = 0.916, 95%CI:

.810–1.031) ( Fig. 6 ). The variability across GCMs in these projections

s much higher under RCP 8.5 than RCP 4.5. Under RCP 8.5, only five

limate models result in per-decade population growth rates > 1 and one

limate model results in a per-decade population growth rate as low as

.791. 

Sensitivity analyzes reveal that per-decade population growth rates

re more sensitive to diapause survival than any of the other vital rates.

 1% reduction in daily diapause survival is the difference between all

0 GCMs predicting persistence and only 8 GCMs predicting persistence

 Fig. 5 ). The same 1% reduction in the remaining vital rates resulted in

ll 20 GCMs still predicting persistence, and overall changes in lambda

f less than 0.1% (Supplemental Table 1). 

iscussion 

By mechanistically linking butterfly population dynamics to precipi-

ation patterns, we demonstrate that precipitation driven shifts in butter-

y phenology can cause populations to decline, and are nearly certain to
6 
o so under the higher emissions scenario (RCP 8.5). In this scenario, un-

er the most optimistic iteration of the model (S d = 0.995, N 0 = 10,000),

fteen of the twenty (15/20 = 75%) global climate models predicted

iami blues will decline throughout the century. Projected declines are

ue to shifts in precipitation patterns and a corresponding increase in

he average time a butterfly spends in diapause (Fig. S2). 

Consistent with global trends of declines of 0.9–2.6% per year across

ll terrestrial insects [ 47 , 55 ], our model projects a decline of 8% per-

ecade (with a range from + 3% per-decade to − 21% per-decade). This

esult is alarming because dry season diapause, the termination of which

s triggered by rainfall, is common across tropical insects [ 42 , 43 ]. De-

pite this being a common life history strategy, we know very little

bout the mechanisms that control diapause decisions for these taxa

 7 , 43 ]. Since studies of global insect population trends rarely include

ropical species, we also know very little about population trends for

hese species, [55] . Given our results, future work to uncover mecha-

isms that mechanistically link diapause and climate is key to predict-

ng future population dynamics for tropical insects. Analyzes of insect

eclines invoke climate change as a possible cause of decline, but, in

eneral, they lack the data necessary to determine mechanisms of de-

line [45] . 

Drought affects population dynamics across trophic levels in ways

hat could interact synergistically or antagonistically with the effects of

rought-driven phenological shifts we documented. In addition to re-

ucing population growth rates by extending diapause length, which

e demonstrated, drought can also reduce herbivore survival directly

hrough reductions in water balance [56] and indirectly by lowering

ost quality [ 56 , 57 ]. However, drought also has the potential to increase

erbivore fitness by decreasing host defenses and reducing predator and

arasitoid populations [ 58 , 59 ]. These are just a few examples of addi-

ional mechanisms through which changing precipitation regimes, par-

icularly in water-limited, as opposed to heat-limited areas [60] , have

he potential to control future fluctuations in insect population dynam-

cs. 

We did not take into account the effects that changes in tempera-

ure will have on insect populations. It is widely recognized that small

ncreases in temperature are likely to push low-latitude insects beyond

heir critical thermal maximum temperatures [61–63] , with the poten-

ial to cause widespread declines. If Miami blue daily diapause sur-

ival is currently close to the daily diapause survival rate for which half

he global climate models predicted extinction, further temperature or

rought-driven reductions in this parameter [64] , would likely acceler-

te Miami blue extinction. We also acknowledge that by using vital rates

stimated from near-ideal conditions in captivity, we are likely model-

ng an overly optimistic future trajectory of Miami blue butterflies under

he selected climate scenarios. Understanding the mechanisms through

hich vital rates of tropical insects are controlled by climate parame-

ers throughout the life cycle is crucial to building robust projections

f population dynamics. Filling these knowledge gaps will increase our

bility to understand and model potential threats and adaptive capacity

f these species to a changing climate [65–68] . 

The future of Miami blue butterflies is highly uncertain. The location

f Miami blue habitat, just above sea level on coastal berms, makes the

utterflies extremely vulnerable to sea level rise. Their limited distribu-

ion also leaves them exposed to extinction via one major disturbance

vent such as a catastrophic hurricane. In this context, reintroductions

re paramount to expanding the butterfly’s range and increasing the

pecies’ resilience to these threats. Our model is one tool that can help

anagers identify actions to promote the butterfly’s persistence, such

s selecting reintroduction sites that will be viable under future climate

cenarios. Incorporating multiple sources of uncertainty in our projec-

ions of future population dynamics is critical to making informed con-

ervation decisions. There are clear places where further study has the

otential to reduce uncertainty, such as measuring diapause survival in

he field. Our modeling effort is the first step in an iterative adaptive

anagement process [69–71] . More broadly, including both biological
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Fig. 5. The day of last butterfly predicted by the model for each combination of diapause survival and initial population size. Box plots summarize results from 20 

global climate models in each simulation. Boxplots summarize median, 1st and 3rd quartiles (shoulders), 1.5 times the IQR (whiskers), and results that fall outside 

that range (outliers). Red lines represent 𝑆 𝑑 𝑚𝑖𝑛 , the diapause survival value for which at least half of GCMs predict persistence to 2100, for each simulation. 
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nd climate uncertainty in an adaptive management framework pro-

ides land managers with the information necessary to broadly assess

he risk that climate change poses to key resources or populations and

o efficiently allocate resources to develop responsive management ac-

ions. Without this context, land managers risk making decisions that

t best are sub-optimal, and at worst, potentially catastrophic for the

pecies whose survival they are entrusted with. 

Maintaining persistent populations of threatened species in a warm-

ng world requires knowledge of how climate interacts with species bi-

logy. We demonstrate the critical importance of seasonal precipita-

ion accumulation in driving species persistence of a tropical butter-
7 
y, something that has been overlooked. We accomplished this despite

nowledge gaps that are common in temperature- and precipitation-

riven systems over the period of detectable anthropogenic climate

arming [72] . We were able to achieve this by combining monitor-

ng data with global climate observing systems, and small-scale demo-

raphic experiments to reveal mechanistic effects of climate and cli-

ate change on phenology and population dynamics. Our methods for

odeling precipitation-driven phenology and its effects on population

ynamics could be applied to economically important species, such as

hose that provide both ecosystem services, including pollinators and

ecomposers, and disservices, such as agricultural pests and invasive
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Fig. 6. Top panels: Annual abundance for each year from 2017–2099 under the best-case simulation (starting population of 10,000 butterflies and diapause sur- 

vival = 0.995). Solid line represents the annual multi-model median from all 20 global climate models. Shading represents annual maximum and minimum values 

from the climate model ensemble. Bottom panels: histograms of per-decade population growth rates from 20 GCMs. Dotted red line at 1.0, growth rates above the 

line represent models that project growing population and those below, models that project shrinking populations. 
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pecies. The focus on temperature in studies of phenology shifts has so

ar restricted the ability to predict the consequences of climate change

or species of interest to those at high latitude. We identified prolonged

rought as a compelling mechanism that may explain past, and will

ikely be responsible for future, tropical insect population declines. 
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